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PREFAGE

An lmportant tool in weapon effects research is the numerical
integration of the differential equations of motion for high tempera-
ture, high pressure gases, Computer programs which describe hydro -
dynamic motion and which can accommodate radiation transport have
been helpful in describing blast effects, fireball growth, high ex-~
plosive detonation waves, shock tube experiments, bubble expansions,
radiation blow-off phenomena, thermal radiation phencmena, high
altitude effects, and underground explosion initial phases.

Such programs have existed at RAND in various but increasing
degrees of sophistication for the past 14 years, Many reports on
blast waves, fireballs, etc., have presented results of such calcula-~
tions. Currently, several other organizations use similar programs,
but many more would enjoy the capability if such a code were generally
available and easily applied,

This report attempts to answer a portion of that need by describ-
ing in detail a program designed for ease of application to a wide
variety of problems, This program has evolved from earlier versions
(by Brode), and is the product of the present authors' efforts over
the past three years. Simplicity and generality are often mutually
exclusive objectives. The compromises made in this computer program
have tended to favor generality rather than simplicity on the supposi-
tion that it is easier for a user to simplify by dropping subroutines
and unwanted features than to invent new routines in order to handle

each new problem,
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SIMVARY

This report contains a numerical program for solving hydro-
dynamic flow and radiation transport problems in the diffusion and
grey-body approximations. The program is appropriate to the solution
of explosion and shock wave problems, and to the study of high ex-
plosive or nuclear fireballs, hot gas dynamics, deflagrations and
detonations, bubble phenomena, shock tube flows, and can be adapted
to a hest of other dynamics problems. It is restricted to plane,
cylindrical, or spherical symmetry,

The report offers (1) a description of the assumed physical
model, (2) a ratiocnale' for the difference equations and integration
techniques used in the mathematical formulatien, {3) a complete set
of flow diagrams for the program and its subroutines, (4) a listing
of the code, (3) two illustrative example calculations for hydro-
dynamics and for radiation flow, and (6) helpful hints for checking

and running versions of the program,



I. TNTRODUCTION

This is a world full of dynamics and transient phenomena, and
our efforts to cope with and to better understand the physical forces
and reactions associated with some of the high pressure, high tempera-
ture features have become both extensive and intensive, We search
for theories to describe such widely differing time-dependent processes
as occur in atmospheric re-entry of space vehicles or ballistic
missiles, in nuclear explosions, stellar energetics, or lightning
strokes. We look for rather precise desecriptions for the dynamic
properties of many such problems, even where the situation calls for
coupled radiation and hydrodynamic flow treatment. In the absence of
adequate analytic solutions, numerical procedures have grown to such
sophistication as to be able to accommodate much of the physics in-
volved and to include both greater realism and detail in treating
boundary conditions, material properties, and geometrical factors.

It is now practical to solve a wide variety of radiation and hydro-
dynamic flow problems by means of computer programs for numerical
integration of differential formulations.

The object of this memorandum is to describe in detail one such
numerical program, The program is capable of calculating in one
space dimension (spherical, eylindrical, or plane symmetry) hydro-
dynamic motions including shocks. Radiation diffusion, grey-body
or other radiation losses, and energy sinks or scurces are simul-
taneously calculable with this code.

With such a program, calculations can be run which provide a
reasonable approximation to the blast and thermal phenomena from
nuclear or high explosive detonations, It can compute the responses
of simple targets to blast and/or thermal radiation loads. It can
predict some deep underground or underwater explosion phencmena, and
can be used for transient blow-off and ablation descriptions, The
program has been used to investigate shoeck flows down tunnels, the
dynamics of lightning strokes, shock interactions, explosive dynamics
in cavities, in space, and in a variety of materials and environments.

In addition, shock and radiation flow characteristics can be studied



in reflection or transmission normal to interfaces - between air and
water, between water and soil, or between various metals and/or other -
solids (treated as compressible fluids).

The general mechanisms for integrating the partial differential
equations that govern the phenomena of radiation diffusion and hydro-
dynamic motions are approximately the same for all these types of
investigations. The chief differences lie in the fixing of different
initial and boundary conditions and in finding appropriate equations
of state and opacities for the materials fmvolved. Many of these
latter problems have been minimized in the present program, and much
of the pain and special programming usually required to set up a new
problem can be avoided., The provision for simplified selection of
output variables and display of results alsc makes it masier to get
the most out eof each problem,

However, the basic computational methods are similar to those

of previous codes developed by one of us {Brode).
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Ii. PHYSICAL ASSUMPTIONS AND MATHEMATICAL FORMULATION

A description of the dynamics of an explosion can be obtained
from the solution of a set of nonlinear, partial differential
equations which represent the conservation of mass, momentum, and
energy in some symmetry. These conservation laws may be ekpresscd
mathematically in several ways, but are generally formulated in terms
of either Eulerian or Lagrangian coordinates. The Eulerian form is
an expression of the conservation laws as viewed from coerdinate
systems fixed in space, and the Lagrangian form is an expression of
the same conservations in terms of a fixed set of masses or gas
particles. A solution in the Eulerian case may represent the history
of a blast wave at a fixed point, while in a Lagrangian system a
solution may describe the experience of each particle {or an initially
identified volume or mass of gas) as it moves about. Lagrangian
(i.e., mass) coordinates are used in the present program.

Most of the currently useful methods for obtaining numerical
solutions to problems in hydrodynamics (with or without radiation
flow) employ a finite differemce technique in which the motiomns are
followed from some initial time to subsequent times through a series
of finire time increments and over a set of discrete mass or space
differential elements. The equations that govern this iterative
integration procedure approximate the differential equations of flow

and are called difference equations.

DIFFERENTTAT. EQUATIONS

In rerms of the variables explicitly treated in this program,

expression of the conservation of mass takes the following differential

form: 3
. R - ;
= V = 3 (spherical)
S (cylindrical)
= 7 eylindri

(1)

e

{plane)
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In which p represents density (V, specific volume), R a radius or
gpatial dimension, and m the mass,

It is understood that unit lefigth is included in the Qolume
of eylindrical symmetry, and unit area is included in the volume
for plane geometry. The mass (m) is defined as the mass per steradian
(Mass/4m) in spherical symmetry (m = IE przdr), while m is mass per
radian per unit length (Mass/2mf) in cylindrical symmetry (m = I; prdr),
and 1s mass per unit area (Haaslzz) in plane symmetry [(m = If pdx} .

The conservation of momentum in differential form appears as

& - -2 L g, X2)
in which v is a particle or gas velocity, P represents pressure, Q

is the artificial viscosity pressure, and t represents the time.

The artificial viscosity is a convenience first introduced by

Von Neumann and Richtmyer(l) for numerical treatment of shock waves.
Its effect is to diffuse a shock front and thus avoid the paradoxical
situation of discontinuities or sharp shock fronts running through
discrete mass elements. A discontimuity in hydrodynamic parameters
requires special treatment in finite difference numerical schemes

in order to avoid extreme oscillations and instabilities. The
artificial viscosity not only avoids special toutines, but auto-
matically accommodates all shocks, even multiple shocks wherever

and whenever they eccur. At the same time, with some care in selection
of problem parameters such as pone size and artificial viscosity
amplitudes, the spread of shocks can be held to a practical minimum

and so not degrade the accuracv of results.
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The artificial viscosity form originally considered (in plane

geometry) by Von Neumann and Richtmyer was

2

o = - L& av | v ¢3)
Vv at at :

in which C is an arbitrary constant, dimensionless, and of wvalue
near unity. As this form indicates, for compressions (i.e., when
3V/3t is negative), a positive viscous Pressure is generated, which
has a magnitude proportional to the square of the rate of compression
and the square of a mass element Am,

Restricting viscous contributions to compressions only leads to

(2)

a modified form

_oem)?® | @
Q ZVR2(5-—1) t L at at J !

in which we have included a dimensional factor to maintain C as
dimensionless in cylindrical and spherical systems.

For weak shocks, this quadratiec form tends to generate serious
oscillations behind a shock front. A linear vigcosity addition may

aid in damping these oscillations. 4An appropriate linear form is

similar:
. ___C;.ﬁ_m._[.i‘i_ |
Q Rel t at |7 (5)

A statement of the energy balance in differential form reflects

the second law of thermodynamics

It at

PN S 4
egr -0 =L, (6)

where the terms on the left represent an adiabatic relation between
rates of change of internal energy (E) and the rate at which com-
pressional work is donme. The right hand side inecludes the dissipative
viscosity term which provides the necessary entropy change in shocks.
The D-term symbolizes a depletion rate, or (for negative values)

an energy input rate,
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The final term (3L/3m), a luminosity gradient, represents the
flow of energy in the diffusion limit., The luminosity itself is de-
fined &s the areal flux per unit angle, where the area is R(a-l) and
the black body flux is <(cA/3)(3aT*/aRYs. Thus, one may define the

luminosity as

Ay

L= - @Dy @rtam, )

in which the Rosseland mean free path ()) has been replaced by 3v/ack,
2 is the radiation constant (see p. 9), and Eq. (1) has been used.
The quantity k is related to the usual Rosseland mean opacity (KR)

by k = 3KRfac, and ¢ is the velocity of light.*

In addition, it is necessary to describe the thermodynamic pro-
perties of the material, i.e., some constitutive relation between
specific internal energy, pressure, and density for hydrodynamics,
Radiation problems also require that an opacity (k) and temperature
(T) be defined and related to the other thermodynamic variables,
These equation of state functions can be expressed in various forms,
but the basic form employed in this program eXpresses energy, pressure,
and opacity as functions of temperature and specific volume (or
density), i.e., E(T,V), P(T,7V}, k(T,V),

DIFFERENCE EQUATIONS

Figure 1 denotes the particular choice of notation and concen-

tration of variables at mass points and time points. In the par-
ticular system represented in Fig, 1 the mass {s identified with

the half points in the "j'" variables, the time is centered at the
half peints in the "n" variable, and the various quantities such as
the velocities, radii, specific volumes, pressures, and energies are
identified at the times and mass points indicated in the diagram,
With such an identification it is possible to translate the differen-
tial equations into difference equations which largely deal with
centered quantities. That is, each difference equation is balanced
pbout the same time point and the same mass point in order to lvoid:first
erer numerical errors in the approximation of differentials by finitg

differences. A common procedure is to begin, as in Eqs. (8-13), to'

*For some physical problems it is important to mote that this form
does not account for retardation, and energy may transport faster than
the speed of light.
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develop at time n + 1 & new velocity and then to find a new radius
for each j point. From the new radii one can define a new density
or specific volume, and from the change in density, an artificial
viscosity at the new time. In these equations subscripts (j or 1%
and superscripts (n, nt%, or m1) indicate definitions of each par-

ticular quantity at those discrete times and masses.

; | \ ' i
T 1
t r 1 ] 1
 ntl T R T R N
rH-J/ ' 1 r 1 T 1
R R T L R
. | ' ' 1 1 '
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\ : ‘ ' X X
el n-% | —w--- e a] Dommmaa 1;1-—--Q,D —————— y----
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j=1 i=% 3 s i+l
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FIG, 1-~Lagrangian difference grid for numerical calculation

First:
- n=}% At , ond-1 g n n-%  ney”
u, = u, ¢ -=— (R PL . - P74+ oF - Qi 3
] J b B3 [Py = Biey Urs T Yoyl (®
in which
&m] = % ﬂmj+% + % ﬁmj_% , (9)
and . .
at" o=y ae™E ¥ attE. (10)
Then
1 e ok
R_] = Rr1 + uj % At 5, (11)
and n+1,5 ml, 5
®, Y - @®. D
VI'H-l _ i i 1 _ 1 12
=% Smm, | T (12)
i=% 0.



'The artificial viscosity becomes

2, ntl 2
Q™tE o Cpltmy ) iy~ _'1-52
j-k wik 2 n+l 2(6-1)
(vJ +v Q(m: ;5)< + R, 1>
: 2
n+1 n
2 855 | Y-y 7 Vien l
+ -, (13)
1l n nt n+l ml &1
Viey Vj_,é)(at %)< R+ R._1>
2
for V"+1 <y , and
Q?ti = 0 for Vn+1 > VP

It is in the energy equation alone that radiation enters
(except radiation pressure which can contribute to the momentum
only at exhalted temperatures). For hydrodynamiecs only, the energy

equation can be written as

- g0 ntl n ™% 1
Bily = Ejt R+ WL Q0L - VD . ag

RADTATION DIFFUSIOXN

When radiation diffusion is included, the luminosity as defined
in Eq. (7) becomes in difference form

2(6=1 n .4 n 4
no_ (R ( )[(TM) - Ty |

j n
(o)




The opacity is averaged with the mass increments and reduced

by the factor ac/3 in which ¢ is the speed of light and a is the

radiation density constant (7,62 X 10-15 erg/cm3/deg4).
no_ n,n .o 1 n,.n .n :
(kﬁm)j é&nj_% k (Ij,lj_%) ; 2mnj_l_lék (Tj’vj+%) ) (16)
- 2 =3 v
ko= ac KR ac )’

The opacity is calculated for the material to the left of the point
j for kn(T?,V?_%) and for the material to the right of the point j

i
n,n _n oo, . +o SN S « S A

. The temperature T. is defined as [ T, + T, . .

for k (Tj, vﬁ%) P ; 5( ﬁa) 5( J____é) ]

This procedure provides a reasonable opacity at interfaces between
materials of very different opacity, and does not add undue complexity

when the materials are the same.

EXPLICIT RADIATION DIFFUSION

For an explicit scheme of including radiation diffusion (one
which has an explicit stability limitation to the size of time

increment allowed), the energy equation becomes

TH =
1 n ™k i ,on 1 At ¢ om n ™k
E, = E, .+ (P, [+ Q. v, -V, + L, ., =L -~ D, 17
J_}é _]"}2' ( J“;z' QJ'%)( J"’lé J_}i) mJ_}é ( J-l J) _]'1/2 ] ( )
, , 33 LA . ‘e
in which D, ° is a source or sink term yet to be specified.

Some itérative converging sclution of Eq. {17) is necessary
in which values of P?ff = (P?ti + P?_%)/2 and En+l are sought which
satisfy both Eq. (17) and the equation of state E(P,V) or E(T,V),
P(T,V). 1In this explicit form, such iterative convergence is
limited to the two variables_E?ti and P?ﬁi, all other quantities
being of fixed value for that step. When a new energy and pressure
have been derived, a new temperature (T?fi) also exists, and so,

ultimately, new opacities and luminosities can be computed for the
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next time cycle.
The set of equations (Eqs. 12=17) together with the equations

of state and opacities ferm a set of equatiens whose solution for
"new' values of each variable at all of the mass points can be
directly obtained by successively evaluating each equation beginning
with j = 0 and proceeding through the maximum j=-point, or through

all the '"active' zones.

DMPLICIT RADIATION DIFFUSLON

The implicit diffusion treatment is a form in which the lumine
osities are treated as centered at the midpoint in time (n+}) rather
than taken at the previous time (n) as in the above explicit form
in Eq. {17). Thus the form of the energy equation becomes

ml _ .n ™1 n nt n _ .l
By - Bt @l s el - v

=% }
(18)
th% ml n -l n) ntkx
+ o4+ L, -L] " -L))=D, .
2mj_2 (LJ"]- j-1 j 3 i-%

In this implicit form the variables to be simultaneously determined

are now Ln+1 and L!,T+1 in addition to E?t]% and P?ﬁi But these energy

equation 3ariab1esJa1e no longer independent of o;her maes points as
they were before, and it is now necessary to solve all of the energy
(and equation of state and opacity} equations for all of the mass
points simultaneously to arrive at mew values, Although such a
simultaneous "relaxation'" of these equations avoids the restriction
of an explicit stability limitation on the time step size permissible,
it does add consgiderable computational complicatien and redundant
numerical exercise to the problem, and go can increase the running
time per time step several fold - in part negating the freedom to
?ﬂ@pse larger time intervals. The procedure consists of the evaluation
of a set of feorward-backward substitution coefficlents, related to

the proximity of variables to their proper values In a self consistent

set of solutions, i.e., related to a measure of the relaxation in a
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given time step.  In this process, the basic variables are taken
as temperature (T) and luminosity (L).

Beginning with j = 1, the following quantities are computed:

j-% :
(19
1 n
P, L+ DL, . L
-% - % o n 1 3 |
+ (=2 2z v - v - D
2 G 0 Wsey " V5o " Py
ot 1 r ey ¥ V-
= -’2 =
G Tl Tt T T (20)
3T, ,  of.
J== J-%
hak T1 oL - nl— n I1 - A
j@; = ECT J;b En'T (Le),V » where typically ¢ <10 A
A
T T (21)
ol _ onl vty ol
Hiy = oy ot Gy s (22)
o+l
— 1 _ - 1
¥l = [z + ATz (LI}-}:% + 1t - SR LY |+ ac™ EJI?fi , (23)
i~k sy i i 3 j j

in which J2+1 = G = 0 (for spherical or cylindrical symnetry) ;

%®
This particular forward-backward substitution scheme, coupled
with a Newton's method for projecting new values,was suggested by

R.E., Lelievier and has been used successfully in earlier similar
programs,
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ML P 208D [qrtly4 gl 4] n+l nel
o= @l LDt - afD]- T,

atl 4(Rn+1 2(8-1) ;1,3 el 2(kam

a4 = (T + L ’“‘aﬁ‘{“* , (25)
i
o+l 1) 2(8-1) oorl 3wl dksm)
b, = 4(R.
j = 4R (7 - 1 St (26)
=%
™1l el
1 i+ts =%
¢l = , ©n
j k 1 n+l tr&%er-l
( m) J-%+ . =%
HI.H-]' cr!.H-l + r.x+1 Kr.l+1
it e L g, ) T - (28)
. (em) 3 + AT 7
J -k =%

These coefficients are successively evaluated for each increasing
integer value of j (at each mass point} until the next j is at a
point beyond the sensible diffusion front where temperature changes
from ambient are negligible. This gzone is desig'nated as the turn-
srorund point (j*} where conditions are such that T -1 > z but
'J*'l'%
must be zero, so that Lj*-i-l #» 0, providing Ij+% <z for all j > j*,
Zl being small.

When there is no temperature gradient the lmninosity
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The procedure then is to compute changes in temperature and
luminosity (using the foregoing coefficients) beginning at j* and
working back to j = 0,
on the {i + 1)st iteration is first

e

The temperatuxze at j% +

calculated as

i+l _mhl intl
Ty T Tpey b gy (29
where
L n+l
N T <0

Ther beginning with j = j%, successive evaluations go as
g g ] Iy

nt+l 1

8L, = - G, 8T, .+ J. 31

3 i 50073 Gn

Bigmlooohnl g (32)

] 3 i
ST, , = (~at™ % g1 4 KLy /gl (33)
i~% j =% -4
reducing j each time until j = 1. "Relaxation" or convergence 1is

deternined by testing each 8I/T or 8L/L against an arbitrary small
constant and entering another iteration loop to recompute the
coefficients and another set of §T and &L as long as any cne &T

or 8L exceeds the chosen test constant,

ADDED MASS

Since interests in explosion problems encompass phenomena occuring
both very close to the explosive (in a small mass and volume) and

very far from the source (with very large masses and volumes of air
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intervening), it is frequently convenient to bring in more air mass
during the calculation.

To expand the mass system without adding indefinitely to the
mmber of mass peints carried requires some mechanism for dropping
er rather combining interior masses &as new masses are added at a
front. When zones are combined, special care should be taken to
conserve energy, momentum and mass. In this program, one zone at a
time (as needed) is added, and two zones elsewhere (in the interior)
are combined in order to keep constant the mumber of zones carried
in the calculation. Because of the form of the artificial viscosity,
sudden discontinuities in mass element size can create spurious
Bignals as shocks cross them. For this reason, some care mmst be
exercised in deciding when and where zones may be combined, Generally,
zones are selected to be combined where motions and pressure or tem-
perature gradients are least, i.e., in such a way as to retain essential
preblem detail while not unduly restricting the size of time steps

dictated by atability requirements.

SOURCES, SINKS, AND DEPLETICON

The single variable, D, appearing in the energy equations can
be uged to represent such physical features as can be expressed as
energy losses or sources. Such source or sink energy rates may be
included in some or all zones in the problem and may vary with time.
The detonation of high explosive can be modeled by choosing this
source texrm to represent the rate at which energy is released in
detonations. With a finite spread to the detomation front, this
source temm becomes the product of the energy generated per unit
mass of explosive (E..), the detonation velocity (UGJ), and the
time increment (At™F3), divided by the total spread of the detonation

front appropriate to that dictated by the artificial vigeosity, 1.e,,

(34)
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where S is the number of zones of detonation front spread, 5Such a

rate of energy increase would then be maintained in each zone until
the total energy added equals the desired detonation energy, i,e.,

for a time equal to SQRXUG].

STARILITY REQUIREMENTS

Such finite difference methods as employved here are frequently
subject to mathematical limitations which place upper bounds on the
size of time increments that can be taken without the unstable growth
of spurious signals from truncation or round-off error. The usual
Courant Condition is simply a statement that time steps should be
smaller than the time for a sound signal to propagate beyond the
boundaries of adjacent zones (as in Fig, 2). Thus, At < AR/s for
every zone, or At < [aRj-%/Sj—%lnin » in which s is the local sound
speed. It 1s generally time consuming to calculate the sound speed
at each zone when an approximate form which is quicker to compute
will suffice to determine the maximum allowable time step within a
reasonable accuracy. For an ideal gas, the sound speed squared is

given by

] = vPfp = PV, (35)

and the stability condition can be expressed as

ae” < vCam) e p ROy, (36)

in which we have substituted AR = V ﬂm/R(ﬁ-l) and 03 is the maximum
value of y to be encountered and depends on the materials used and
their equations of state, For ideal gases, a value of 5/3 is a
maximum, and lesser values are larger than unity always, so that
using 5/3 for C3 could keep At smaller than nmecessary by no more
than 23%. TFor the dense gases of detonation products before
expansion, or for fluids such as water, or for solids at high
temperatures and densities the effective maximum v can exceed 573,

and the constant C3 should be chosen with that in mind.
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Fig.2-—Courant stability condition
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In shock fronts or compression regions, the presence of a
quadratic artificial viscosity changes the nature of the linearized
differential equations from one which characterizes a wave equation
to one of a diffusion type, Consequently, in such shock regions
another difference equation stability condition exists, a diffusion
stability limit. An approximate derivation of the viscosity stability
condition comes from the momentum conservation equation (Eq, 2), with
the assumption that the artificial viscosity pressure (Q) dominates

the usual thermodynamic pressure (P). 1Im that cése,
Quy gl (37)

In regions of compression, the quadratic form of the artificial vis-

cosity has been taken as

2
o - Cl(ém) (BV 2 . Czém 37 38)
- [ .
v Rz(é 1) “at v R 1 3t

But differentiating the conservation of mass equation (Eq. 1), and

substituting for av/3dt leads to

2
o - Cy (am) 2 Ré-lu)z N Cz?“’ 2Ly (399
v R2(5-1) B v R -1 3m

With this form and from

v R
31 (40)
Ré 1 om?
the momentum equation in a shock (Eq. 37) becomes approximately
du ~ 2 _a_[ v du.2 7 va 1 2u  (8-1y 7
TS RGN 2D @ 1 - cyom ?R“[ BLaR T E
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and ignoring geometric divergence terms which occur in cylindrical
dc spherical symmetry (valid as long as shock front dimensions are
iﬁlll compared to radii or other problem dimensions) this equality

écoms
-- 2¢. (om) 22 2 V C.om .2
Q!_ o~ - 1 Q'Li B L 2 a (42)
t 2D & 7 5T 2

In shock regions, derivatives such &s du/3t or azu/aR2 are large;
i.e., rapid velocity changes and velocity gradient changes are taking
place relative to changes in other parameters, so that to some

approximation this equation appears as & diffusion form

U~ 3__
’
e ~ K 2
where
Vom Vo
K=—g-_—_~1—[02+20 _ TR, e E e, (43)

which is considered nearly constant or slowly varying in the region
of interest. Since we have not chosen to defime the artificial
viscosity at the midpoint between the new and the old velocity,
but rather have defined it at the old velocity time (n~%), this
diffusion differential form (Bq. 43) translates into a corresponding
difference equation which uses velocities at adjacent mass points
and at the old time (n-%) to extrapolate to a new velocity at time
oty

wty ~ n-% a", nek 2% 4

u ~—u, °~-K (u, u, u, o)
3 ] (AR?)z i+l j j-1

(44)
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By considering the growth of perturbations in the new velocity
(see Von Neumann and Richtmyer, Ref. 1, p, 236), it becomes clear
that etability for such a forward-difference scheme has an explicit

stability condition which is

2 5 1

2
we@l] L

d du
min 2[02 + ZC 5 T 'Ble Vi

min
or (45)
2ilc, + 2, m 5 ]
But, again ignoring geometric divergence terms,

- - ml . n
_B_E-EE_iQ__Rblrl v (E-l)u]:ljﬂHV -V 6
3  V am V LRé-l 3t R Vot S mk oty
so that

2,0t |v‘j’+i - v? y
-k -
nrz ooy 40 vy 1. %7)
R, S-RLS v,
] j= 1=3 WAx

When the explicit form is used to compute radiation diffusion,

a similar forward-difference stability condition applies, viz,

AmT ™
T ! ’ (48)
e ) T ar Rz(a B ,Jmin

FAY
min



=20~

Since for various regions and various reasons the implicit
radiation diffusion routines are unable to converge on a realistic
solution and are for practical purposes unstable beyond some reason-
ably small time steps, it is often necessary to arbitrarily limit
the size of time steps to a value larger than but proportional to
that allowed for explicit radiation. To make such & choice convenient,
the program includes an explicit stability condition with a constant
(C5) which can be chosen as suitable for implicit radiation (e.g.,
egqual to 2,3, or 4), but must be taken as uwnity for the explicit routines,

These three stability conditions are:

Courant;

(r:.x:"‘”i)z(R“)z(6 Den ¢
P = 1 %3 <1. (49)
Vi (ony0)°

max
Shock (artificial viscosity):
1 n
v, -V,
Ui ] e o
Vn+ Atn max
J -1 j~%
in which C, > 4c, .
Radiation diffusion;
2(6-1 3
o BEH2CD .
I = At Y51, (51)

o al;l
Cstm, (ka )J. (

€. = 1 for explicit radiation.

5

CS 2 1 for implicit (open choice).
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ITT. HYDRODYNAMIC EXAMPLE

A simple test problem will facilitate the explanation of the
essential features of this program. 1In any such code there are
many arbitrary designations and notations which are easier demon-
strated than explained. Hopefully, none of the empirical choices
have significant influence on the results of any calculations in so
far as the physical representation is concerned, Some of the para-
meters, such as choice of the number of zones or mass points, choice
of zone sizes, or cheoices of convergence test criteria do affect the
results when a cholce becomes extreme or sc coarse as to reduce
accuracy. A few example calculations may help demonstrate both
appropriate values for such constants as are required and the need
or function of each input required.

As a simplest beginning, a2 plane shock wave generated by a
constant pressure at one boundary will be demonstrated. Such a
problem has a simple analytical soluticn, and the deviations from
the correct solution that occur when we make various choices of
parameters are easily identified. When the constant pressure is
applied at the left-hand boundary of a volume of ideal gas, a shock
of constant strength should move at constant speed to the right,

The usual Hugoniot or shock conservation conditions relate the con-

ditions behind a plane shock to those in front of it as follows:

u p
E_ 7.8 = -
T 1 0 or p U pS(U us) R (mass) ... (52)
Ps N Po i_1
E_-E = 5 QEO- ;;) s (energy) ... (53)
Po- ¥, =p,u, U, (momentum)... (54)



=22

in which subscripts "s" refer to shock quantities, subscripts "o
rffer to ambient (pre-shock) values, U is the shock velocity, u the
particle velocity, p the density, P the pressure, and E the interna;
energy. It has further been assumed that the pre-shock gas velocit}
is zero.
If one defines an "effective gamma" by the relation

= P/p(v~1), i.e., y =1 + P/Ep, and eliminates internal energies

from these Hugoniot expressions, then in place of the energy equation,

one c¢an write

P + 1
S.YS
- . + 1
p P 'Y-l
& _ o s 55
p P v. +1 (55)
J o
+
by vy o« 1
© (e}

Eliminating the shock velocity (U) from Egs. (52)and(54), leads
to an expression for the square of the peak particle velocity (u )
in terms of density and pressure,

(¢» - P) P
2 _ Xs__o )
= A (1 ps), (56)

and using Eq. (55) to eliminate density leads to

u 2 _ Z(P - F )[ (—Y.S__'TI) YO-IJ . G7)

Y-+1 . 1]

s (2

For an ideal pas (yb = yb), this expression reduces to

2 2(Ps - Po)2
s T TR FGAOE T, G8)

u
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Similarly, the square of the shock velocity becomes

) LR AGRDE

Ut o= 20 . cen 1))

o]

With a value of vy equal to 7/5 {corresponding to an ideal diatomic
molecule gas and appropriate for air at normal temperatures) these

expressions reduce to the following:

6P5-+P0
u - ,Z5p , (60)

o

(B_-® )
u_ = R - (61)
Vo (6P +P /5

and the density ratio becomes

Fe 6P5+Po
. T Tae (62)
o 5 o

The specific example used to illustrate the mechanics of running
2 hydrodynamics shock problem employs a suddenly applied, steady pres-
sure at the left-hand boundary, and that pressure was chosen as one
kilobar, or 107 dynesfcmz. The ambient pressure into which the dis-
turbance propagates is taken as that corresponding to an ambient
density of 0.0011 gm/cm3 and a temperature of 293K in an ideal
diatomic gas (y = 1.4, R ~ 2,8777 x 10+6 dyne-cmfgm/oK). The caloric

equation of state becomes

P = (v~1)pE = O0.4pE , - (63)
and the thermal equation of state becomes

T =—-E—R - (—Y‘El/‘,x - 1.39x 107E, ... (64)

with T in °K and E in ergs/gm, P in dyne/'c:m2 and p in gm/m3.



The value of the ambient pressure is approximately 0.927482 bars.
The pre-shock energy is about 2.10791 x 10° ergs/gm, Thus, from the
above relations (Eqs. 60-64) and the above pre-shock values and
for a driving pressure of.109 dynes/cmz, the pre- and post-sghock
values can be computed and used to check the performance of the

rnumerical program. These values are listed in Table I below.

Table 1

SHOCK PARAMETERS FOR EXAMPLE CALCULATION

Hydrodynamic
Symbol Parameter Pre-Shock Post~Shock
P Pressure(dyne/unz) 0.927482x106 109
. 3 -3 -3
p Density(gm/cm™) 1.1x10 6.56173x10
u Particle velocity 0 869,452
(cm/sec)
U Shock velocity —— 1,044,552
{emf sec)
9 11
E Energy(erg/em) 2.10791x10 3,80999x10
T Temperature(°K) 293.00 52,959

In this demonstration problem we have arbitrarily chosen thirty
zones of one centimeter thickness into which the disturbance (shock)
may propagate. The initial conditions in these zones, as well as in
any zones to be added later, are the pre-shock conditions listed
above.
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The initial time step may be taken as anything less than that
which the stability conditions stipulate, but too small an initial
8tep may regquire many cycles to build up to a significant increment
gince the propgram limits increases in ﬁtn+% to(9/8)ﬁtn-%. In cases
of a suddenly applied load or an initially rapidly moving boundary,
the stability conditions may not provide a correct limit on the
first eycle. 1In any case, such failure is avoidable by insuring
that the initial step is chosen as less than the time for a boundary
to move across the next zone, andfer less than the time for a sound
signal to cross that gzone.

The acceleration of the left hand boundary on the first cycle

is approximately

bu ~ _.'_'u (65)

in which . = (Ao,
eh oy (J+sz

+ ﬂmj_%)XZ and pm_, = O. The pressure, P_,
is the boundary pressure of 109 dyne/cm

2 : . 2
» P, 1s the ambient pressure

1
MR, = 1.1x10"3 [omZ.  Thus
Preys Ty T T gaem -
the velocity of the left boundary after the first time step is

6 2 '
(~ 10" dyne/em”), and a mﬁ% =

(X
o]
]

u® = At = at° 1.818x1012(cm/5ec) } (68)

&

The time increment At° may be interpreted as an average between
-1 1 -1 1
the At © and At?, If we presume At 2 = 0, then At® = At%/2, {.e.,
half the initial time step. Thus

-

1
u? ~ 0.9091x10%% Ac? (em/sec) (67)

o]

and the change in pesition of the boundary becomes

1

! L
R = ufae? a 0.9091x10"% (4697 (em) . (68)
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If we ask that the iInitial change in the leftehand boundary be
amall compared to the zome size, say less than 10% of the first zone

thickness, then I§

1

AR '
% ~ -6
At? <« 0. 9091}:1013 0.33166x10 ° /AR - (69)

We are, then, led te¢ an initial choice of time step of less than

0.33x10-6 sec. In this first example we have (arbitrarily) chosen

to start with é.t;é = leO—? sec, or, in the program units of milli-
seconds, bt% = 2:-110-4 msec and At° = At%IZ = 10“4 mEEC,

INTERFRETATION OF EXAMPLE PROBLEM NO. 1 QUTFUT

HAROLD TEST 1.* The problem is s0 labeled for Hydrodynamic
And Radiation, One Lagrangian Dimension, and is preferred by
Fsome of us, as within the six 1etter limitation on notation. The
sBenior author would prefer the short title RODHARD, standing for RAND
$ne Dimensional F@ydrodynamic And Radiation Diffusion, which is some-
what more descriptive,

EAL GAS. A further identification of the nature of the

problem,

EQUATTONS OF STATE FQR THE GENFRATOR. These equations of state
are listed as a matter of record, since questions may otherwise arise

at later times as to just what fits or tables were used. In this

case, the Benerator was provided with the two relations

ja~)
I}

(v-1)Ep as FP1001 GRESV, (70)

and T

(y=1)E/R as FE1001

f

L139%E, (71)
The Executor was given the single equation

P = L(4%E[V, (72)

*

Expressions in CAPITAL LETTERS or underscored are those appearing
on the output sheets reproduced at the end of this section and to be
explained or discussed here,
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with the additional provision for temperature caleulation at output
times as specified in the generator, For hydrodynamics, the tempera-
ture is not a sufficient nor a necessary quantity.

HISTORIES. Tec restart or continue the problem without beginning
over again, tape histories can be provided periodically, storing data
analogous to that necessary at the begimning and provided by the
Generate sﬁbroutines. The selection of when such a tape record shall
be written can be either by cycle intervals or by problem time inter-
vals, 8Six successive rates may be specified. In this example, his~
tories are called for every .025 milliseconds until 1 millisecond.

PRINTOUTS. The frequency at which specified listings of variables
at all active mass zones will be listed can be similarly specified, 1In
this case, we have elected to print out such data on the fir st three
cycles to aid code checking. Subsequent listings of data are called fo
at cycle 10, at forty cycle intervals until cycle 263, at cycles 263
and 264 (to illustrate the variables just before and just after the
combining of a pair of masses to accomodate an added zone), and at
fifty cycle intervals thereafter until cycle 614,

ENERGY CHECKS. In many problems it is helpful to keep track of

both the distribution of a net explosion emergy and the total net en-
ergy, and this is provided in a print of the intermal, kinetic and
total energy in each region, as well as the sum of intermal, kinetic
and total energies over all the regions. In this example, since work
is being done continuously by the pressure on the boundary, such an
energy summation serves little purpose and little check on the accuracy
of the calculation, Consequently, we have hoped to avoid any energy
checks by selecting an interval larger than the expected length of the
run (i.e., every 1000 cycles).

PMIN BNDRY COND, Whenever a special boundary condition is selec~

ted, it will be listed here. In this example, a constant pressure of
0.1 jerksﬂ;’meter3 (1 kilobar} is applied at the lower (or left=hand)
boundary - at j= -% - for a very long time (for 1011 milliseconds).
RMIN = 1. This indication of the initial value of the position
of the left-hand boundary is important in that it indicates a non-

zero value of the position. Whenever the RMIN is started at exactly

*A jerk = 1016 ergs,

=1



zero value, the program avoids calculatien ef the velocity and the
radius at that boundary, and consequently, the boundary remains at
gero value throughout the problem. _Such is the intention for spher%—l
cal and cylindrical geometries, and could be the case where a rigid;

§
boundary is desired at the left of a plane geometry problem. In this
case, beth the velocity and the position at j=0 will be computed each
cycle, and can be expected to change.

PLANE GEOMETRY. This is a reminder of the selected geometrical

factor - that the problem is set up in plane rather than cylindrical
or spherical symmetry.

REGION 1., MATERIAL 1001. Each region beginning at the left~
band boundary is designated with an increasing integer (region 1
being the first, regioen 2, mext, etc.) and by a material number
designation. The material mumber should correspond to one of those
listed with the equations of state, and thereby identifies the
material properties that will be ascribed to that region, Also
listed for each region are the various selactable constants, Cl
through CS' The definition of C1 and 02 is given in Eq. 13 or as
the amplitudes selected for the quadratic and the linear terms of
the artificial viscosity, respectively. Since the ghock in this
exauple will be a fairly strong one, no linear viscosity is necessary,
and Cz is set equal to zero. C1 is chosen equal to 6, The mmber
of zones to be expectad in the shock front, as derived in a similar

manner by wvon Neumann and Richtmyer(l) becomes

Mmaber of zones ;'nyﬁclf(y+1) . (73)

Since this example problem uses an ideal gas with v =1.4, a value
of 6 for cl should build a shock spread of about 7 zenes. If we
were in water and so using a v more nearly equal to 7, then a value
of Cl = 14 or 15 would be necessary to make & spread of six zones.

The Courant stability condition also includes an adjustable _
constant. As usged in Eq. (36}, C; represents & maximum value of v,
so In this case it can be taken as 1.4. It was in fact, taken as
slightly larger, as 1.6, but that is not necessary.
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The artificial viscosity stability condition involves a constant (ol
which should be at least as large as four times Cl (see Eqs. 47 and
50). Demonstrating a certain insensitivity in this condition, we
have used without unstable results a value of only 16, while 4Cl= 24,

The radiation stability constant, 05 (as defined in Section II)
must be set to unity for explicit radiation diffusion. Larger values
of C5 are theoretically permissible for the implicit radiation formu-
Lation. For hydrodynamics, it is immaterial, and in this example,
is Bet to zero.

The ambient energy for each region is also specified so that
in totaling the energy of that region and/or of the whole system,
the net energy introduced by a source (an explosive yvield, or an
infilux of radiation emergy) can be identified and maintained even
as new zones (at ambient conditions) are added to the region. Since
a continuous influx of energy is involved in this example problem,
no attempt to account for the net energy will be made, and E = 0
will suffice. If one were to choose to include (or rather exclude)
this ambient energy in the energy check sums, the appropriate value
would be 0.2108, the same energy listed as initial value for the
internal energy of the last zone.

The table of initial values which follows the list of constants
specifies in the units of the code (the meter, millisecond, megagram
system) for each zone the radius "R" (meters), particle velocity "U"
(meters/millisecond), temperature "TEM' (104 OKJ, specific volume

10 dynes/cmz),

"L (msjmegagram or cm3/gm), pressure 'PR" (jerks/m3 = 10
and internal energy "EG" (jerks/megapram = 1010 Ergs/gmi. A vestige
of code checking interests are the next two columns labeled "KP" and
"KM, These are, respectively, the opacities at zone boundaries,
using the density and the material designation (and so the opacity
prescription) of the zone just ahead of the zone boundary KP =
Kj(Tj’vj+%) and just behind the boundary ®M = Kj(Tj’vj-%)' Since

this example does not include radiation, opacities are of no interest
end have been left zero, as have luminosities in the last column

labelled "EL",
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The mass increments or elements are listed as "IMASS" in the
next to the last column of the initial values table. The first
column shows a spacing between zones of one centimeter (0.0l m) and
the specific volume of 909.1 cm3fgm corresponds to a density of
1,1xﬂ5'3 gm/cm3 so that the mass elements, which in plane gecmetry are
just the product of the zone dimension times the density, become
1.1x107°.

Listed below the table of initial wvalues are such factors as
the initial time increments and others which have some arbitrariness
of choice and so should be selected at the outset, The time incre-
ments during the problem running can be controlled automatically by
the stability conditions, but the initial values must be chosen
specifically, 1In this case, DT stands for the average of the current
and just previous time increment (Atn) and is taken as half the
current choice as if the previous wvalue were zero., As discussed
earlier, the value of the initial time step (DTP) has been chosen
as ﬂtn+% = 22:10“4 msec,

If the problem imvolves the ingestion of mass or of new
zones ag it progresses, then gome information must be supplied as
to where zones are to be doubled and what gize zones are to be added,
Under MASS ADD INFO, JO = 5 indicates that we have chosen to cembine
the fifth Qnd sixth zones when new zones are needed {and then sequen-
tially the next two zones, etc.,). By JOS = 0 and JOM = 23 we have
specified that when JO has advanced to j = 23 it is tc be get back
to j = 0. The size of the added zones is given by DR. When DR is
positive, 1t indicates directly the thickness of the added zone,
such that in plane geometry fm=pAR, where p is the density of the
last zone (at j=JMAX), When DR is given as a negative mmber, it
indicates a fractional increment, as a Fraction of the previous
radius or the last position value (R ax)’ 80 that for this example,
= D.0076923x1.3

fm
the first added zone will have a thickness AR = DR°R

= 0.01 m.
The set of X's listed under PERCENIS are not percentages but

30

are fractional numbers used in tests of the smallness of the change

in computed quantities relative to the initial or final value of
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that quantity. X1, X2, and X3 are associated with convergence rou-

tines in the radiation diffusion by implicit method, and are set to

zero in this strictly hydrodynamic example., X4 = 0.4x10—5 indicates
that a variable being determined in GETVAR has been found to be con-
sistent with the determining values through the equation of state to
a fractional accuracy of at least 4 parts in a million.

In problems where zones are added and combined automatically
many times, there is the possibility of choosing JO, JOS, and JOM
such that some region of the problem becomes too coarsely zoned.

A check or contrel on the maximum size to which any one zone can
grow is provided in the use of X5 since, before two zones are
combined, their combined width is compared with X5 times the lar-
gest dimension or radius in the problem. In this case, the selec~
tion of X5 = 0.125 guarantees that no zone can become larger than
one eighth of the largest radius. The last fraction, X6, is the
convergence test for energy compatibility {in the energy conserva~
tion equation of the ROA routine) with pressure. Thus on successive
evaluations, the internal energy shows a change of less than one
part in ten thousand (for the wvalue of X6 = 0.1x10-3).

In this example, as often is the case, most of the zones in
the problem are inactive initially, and need not be computed until
some signal propagates into them. Since it is wasteful to compute
through them, a floating boundary condition is set up which determines
which will be the last zone to be calculated on each c¢ycle. That
last zone is denoted as “"JHAT', which in this problem is started
at 3. To advance JHAT when needed, 2 test is made on the temperature
(if subroutine JHTT is used) or the particle velocity (if subroutine
JHTU is used) at that last zone (j = JHAT) against a constant Z2.
Whenever the temperature (or velocity) equals or exceeds Z2, JHAT is
increased by unity, and one more zone is computed. 1In this examplie,
we have chosen to test on velocity (using subroutine JHIU), and Zz2
has been taken to be 10—4.

The desired mumber of active zones is limited by the constant
JL, such that whenever JHAT reaches JL, either another zone must be
added while two other zones are combined (thus keeping JL constant},

or a special boundary condition is applied, such as a free or fixed

boundary.
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The constant 21 is similar to Z2 in that it determines the

threshold temperature for adding another zone to the radiation

" diffusion part of a calculation. Since this example has no radia-

tion flow, Z1 has been set to zero, but could have any value, Sim-
ilarly, JSTAR, which denotes the last zone for radiation diffusion,
has been chosen zero, but is of no consequence to this calﬁulation.

The last cycle to be computed is denoted as NF, and is here
chosen as 614,

A list of the subroutines used in the Executor follows the
Generate input and starting data print-out.

The print=out for the actual execution of the problem begins
with a title (TEST 1. HYDRO ONLY, IDEAL GAS), and then follows a
list of the initial values of the selected variables displayed in
the format chosen for those zones of index J £ JHAT + 3. The units
chosen for this test problem are the internal calculation units.
The particular parameters chosen for output, and the order of output
from left to right is zone number (j), radius, particle velocity,
density, temperature, internal energy, pressure, artificial viscosity,
and mass per zome, The artificial viscosity is a convenient indi-
cator of compressions or shocks. The masses are constants of the
motion in this Lagrangian system, but with the later periodic com-
bining and adding of zomes, its listing simplifies monitoring of
zoning and wmakes any disparities in adjacent mass increments more
readily identifiable,

Following the initial value listing is a line of information
for the first cycle, a type of output which is presented for every

cycle, Listed from left to right in the internal units of the pro-

gram are the cycle number (o), the time at the end of the n-th cycle
(milliseconds), the time increment for that cycle (Atn-%), LAMBDA
(the maximum value of the artificial viscosity stability function),
JLAM (the zone number of the largest value of LAMBDA) , OMEGA (the .
aormalized Courant stability conditions}, JOMEGA (the zone number ofj
the largest OMEGA value), GAMMA (the radiation diffusion stability )

control maximum value - not used in this pure hydrodynamics problem),



-33-

JGAY (the zone number of the most critical value of the radiation
stability condition), JO (the next zone at which combining will take
place), JSTAR (the largest zone through which radiation diffusion will
be calculated, i.e,, the outer boundary of the radiation diffusion

~ zerc in this problem, since there is neo radiation), JHAT (the last
zone for which hydrodynamics will be calculated, i.e., the outer
boundary), and IC (an iteration counter used in the implicit radia-
tion routine - zero in this problem),

Qutputs are listed for the first three cycles as an aid in code
checking and to demonstrate the cycle-by-cycle propgress of the finite
difference method. WNote that after the first cycle the kilobar bounda-
ry pressure {listed at j=0} causes some movement in the first (3=1)
zone., This shows up as a non-zero velocity at the j=0 boundary and
as an increase in density in the first zone. Corresponding increases
in temperature, internal energy and pressure in that zone are also
indicated, and because it is a compression, some artificial viscosity
shows up.

On the second and third cycles, further growth of the movement
is evident as the density continhues to increase in the first zone and
some compression reaches into the second zone. The very small and
negative velocities that appear on the second and third cycles are a
consequence of (and a measure of) the truncation error, Rounding the
last figure of the pressures in adjacent zones slightly differently
causes velocities of this small magnitude,

Note that the stability conditions have allowed the time incre-
ment to increase by 9/8ths on the second cycle, but have reduced at
by 8/9ths six times to a value of .98654x10-4 on the third cyele to
conform to the stability restriction from the growing artificial vis-
cosity - indicating a growing shock in the first zone. The value of
LAMBDA is near unity, while that of OMEGA is still quite small, indi-
cating that the dominant stability is the viscosity or shock criterion
(LAMBDA) rather than the Courant or sound speed condition (OMEGA).

By cycle 10, conditions in the first zone are well on their way
toward representing a shock corresponding to the sudden onset of

pressure we have exerted on the boundary. Between cycle 3 and 10 JHAT
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has increased from 4 to 6 as more zones are set in motion. The density
in the first zone is now nearly twice its original value.

By cycle 50, the ghock is formed and is moving away from the
boundary, Pressures, densities, temperatures, internal energies an
velacities are all settling down to mearly constant values behind the
front, At succeeding times (e.g., cycles 90, 130, 170, 210, and 250)
all these quantities are within a percent or two of a constant value
except for density, temperature, and internal energy in the first
zone, The first zone or two are in this example somewhat anomalous,
since they experienced a sudden onset of presgure - not a& shock., The
"definition'" of a shock in such numerical schemes using artificially
smeared fronts is one in which several zones of spread are necessary
for normal propagation. When a boundary eor imitial conditionm prescribes
a more rapid change or steeper gradients than are normelly propagatable,
the excessive heating of multiple or superimposed shocks is a matural
consequence. Once a proper shock is developed, the appropriate Hugoniot
values are generated.

The slight oscillations behind the shock cause small compressions
and small artificial wiscosity values. A limmear wviscosity term might
be used to further damp such oscillatiens if desired. The last cycle
run, cycle 614, has pressures as shown in Fig. 3 in comparison with
the analytical exact solution (presuming & shock to have existed from
the outset), The slight lag in the peak or shock front for the cal-
culated pressure profile might have been eliminated by a set of
initial conditions which more nearly represent the traveling sheck
including initial particle velocities as well as pressures in the
first few zones and at the boundary itself,

The special display of cycles 263 and 264 allow a comparison of
data just before and just after combining zones 5 and 6 into a single
zone at 5, Note that on cycle 264 the mass at j=5% (listed on line
§%6) is the sum of the masses at lines 6 and 7 of cycle 263, The F
velocities, densities, energies, etc.,, are recomputed so as to consqfve
momentum and both kimetic and internal energy between the two zones?
and the new single zone, Mass conservation is autemetic in the simple

addition of masses. After combining, all the outer zones are shuffled
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dewn to a zome number one less, and a new mass zone is added at the
largest (right-most) zone boundary,

This simple test case problem takes about one minute for execu-

tien en the RAND machine combination 7040/7044 IBM.
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TON EXAMPLE

; A somewhat more complex example may help to demonstrate the

i radiation aspects of the program. This second example will use
spherical symmetry, radiation diffusion by the implicit formulation,
single precision, analytic equations of state and opacities, two
materials, grey-body radiation loss, and a different choice of output
wvariables and units.

The physical situation chosen to demonstrate the interplay of
radiation and hydrodynamics is that of air surrounding an aluminum
sphere in which 1012 calories are released, This energy source is
confined to the imnermost one~fifth of the aluminum mass and isintroduced
uniformly in time over one-tenth ofla microsecond, The mass of
aluminum is taken as 100 pounds. Although this suddenly heated metal
ball 1is not clearly a good model for an exploding nuclear device, it
will serve well here to illustrate the essential features of the pro-
gram in dealing with transient radiation flow problems where hydro-
dynamics also becomes jmportant.

The air and the aluminum are characterized by analytic formulae
for the equations of state and opacities and are presentad in the
listings at the end of this section. The analytic forms for air are
particularly complex, and can lead to excessive running time for some
problems, since the equations are computed through many hundreds of
times for most cycles. The alternatives are to use simpler approximate
fits (this one is good to 5% almost everywhere) or to use tabular forms.
The formulae for aluminum used here are quite approximate but also
fairly simple.

The CDR subroutine computes sources and sinks., In this example,
it generates the initial energy (at a constantrate for a fixed time
interval), and also calculates a grey-body radiation loss in the air
which (by choosing an input option of TRAD=7 or &) is computed using
a special fit to the emissivity of air. A choice of TRAD=6 or 3 allﬁws
the gubroutine to calculate this grey-body loss with the Rosseland E
mean free path of whatever material is exposed., This grey=-body loss

has the form
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D = o0 V7% Ay (AR/2) /(A , (74)

in which ¢ is the Stefan-Boltzman radiation ¢onstant, here equal to K
-4 o
5.67x10

efther the Rosseland mean free path or the emission mean free path

Ijerks/meter2/millisecond!104 degrees Kelvin, and j is

for air., /MR is the zone thickness, Rj-Rj-l for the corresponding
mass Amj_%. There is a further multiplicative factor when air is the
outer region (IRAD = 4 or 7) which is an approximation to the cold
air transmission cutoff in the ultraviolet (at 1860 Angstroms). In
units of the code (temperature T in 104 degrees Kelvin) this factor
is:

2

£ =25/(25 + 3.5xT7° + T3). (75)

The Generate print-out is similar to that for the first example,
but now it is necessary teo include a radiation stability constant.
The implicit scheme in theory needs no limit on time step size, but
some limit is necessary in practice both to avoid too many iterations
per c¢ycle and to avoid exceeding convergence domains which frequently
seem to stem from the complexities of the equation of state fits.
While the radiation front is building or when it is crossing & dis-
continuous boundary (between regions), it is prudent to limit the
stability constant C5 to a value of about 1.5, but afterwards a much
larger value is more economical, While too large a value necessitates
too many iterations per cycle, too small a value restricts the size
of the time increment without much reduction in number of iterationms.
The total number of passes through the iteration loop in advancing a
given amount in problem time is a rough measure of running time
economy, since the bulk of the computing, particularly with complex
equations of state, is done in such loops (e.g., ROC, RDI, ROD loop).

The iteration procedure for convergence is arranged to become

progressively less exacting as the number of iterations increases,
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After five iterations the test on the fractiona] change of lumin-

esities is dropped and only temperature changes are monitored for ¥

: iubsequent iteratiens, (See listing or flow diagram for the RDI
.subreutine,) After ten iteratinns, the fractional change of temperi-

ture is allowed to be four times larger (where initially §T/T is
tested against X3, now the test is against 4%X3)., After 15 itera-
tions the test is made against 20%X3, after 20 iteratiens against
100#X3, and after 25 times around the loop, the test on the itera-
tive change in temperature relative to the temperature itgelf is
that it be less than 1000%X3. At the twenty-fifth iteration a
treuble-shooting print routine is activated, and most of the numeri-
cal values for parameters calculated in the relaxation loop are
listed for all subsequent iteratioms until relaxation or until the
29th loop when the problem dies,

Settling for less accuracy when many iterations are required in
finding & self-censistent set of temperatures and luminesities im-
plies that the proecedure is to some extent self cerrecting, and that
subsequent cycles will not suffer from such a single or accasional
reductien in accuracy, When a real instablity is in the making, such
is oot the case, but then, & cycle or two later, & stop is imevitable,

All ef the test constants, X1 through X6,must be specified for
this test case with radiation and with added gzones. The Xl test
eceurs in the ROE subroutine in finding new temperatures in the
hydredynamic regions beyend the radiation diffusien region and is
similar to the GETVAR routine which uses X4. Both X1 and X4 should

be taken to have the smallest values (leo'ﬁ) of any of the test
constants, Both require that temperatures derived for some value

of energy and density will be correct (consistent) to two parts in
a4 millien. The X2 test eccurs in the implicit iteratien loop for

luminesity convergence, and i{s taken here to be four times larger

. -&han X1 and X4, The X3 test determines the temperature cenvergence »

in the same implicit scheme, but is chesen here to have a value i

| twice that of X1 er X4. The test of cenvergence in the first guess!’

for temperatures and luminosities prior to entering the implicit

iterative loop uses X6 and as such is allewed to be 100 times larger
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than X1. The X5 constant controls the size of the doubled zones.
If a pair of zomes about to be merged into a single zone (CZR sub-
routine) promises to be thicker than X5 times the largest radius
active in the problem (radius at JHAT), then that doubling is not
allowed. With a value of 0.1, no zone will be allowed, through
doubling of zones, to become larger than 10% of the maximum radius.

In the RAND version (but not the all-FORTRAN version), a set of
variables and the units in which they will be presented are listed
at the beginning of the output, The zero-cycle listing which follows
shows the initial conditions to include no motion, normal 293 degree
Kelvin (2000) temperature, 14.63 psi ambient pressure in the air
(something more than 2 kilobars in the aluminum inttially), 1.2 kilo-
grawms per cubic meter air density, etc. INTENG stands for internal
energy, DYNPRS for dynamic pressure (pu2f2), ARTVIS for artificial
viscosity, LMNSTY for luminosity, ROSMFP for Rosseland mean free
path, NETIPWR for net power as represented by the mean free path
times the spacial gradient of luminosity (l-(Lj-Lj_l)/(Rj-Rj_l)), and
RALORT for radiation loss rate as carried by half the THETA term
or as D#*AM,

Note that on the first cycle, although the stability numbers are
all small, convergence requires three iterations as indicated by
iteration counter (IC).

Note that the energy check print-out after the first cycle shows
some internal energy in the first region, indicating that the source
term is active. The slight amount of kinetic energy in both regions
stems from the small velocity that arises at the region interface
(pressure in the aluminum being initially 35,360 psi).

The first cycle print-out shows the velodty at the interface,
the corresponding dynamic pressures, the rise in the temperature,
internal energy, and pressure in the first zone where the energy is
~ being introduced as well as changes in luminosity, mean free path
?_Ihﬁ_ﬁéf power. In the first zome, the radiation loss rate shows a
negative value (-1019 cal/sec), which is the rate of input of
source energy. Seome slight radiation loss occurs at the interface

also, but is unrealistic and negligible,



‘The next two cycles show the radiation flewing into the second

g? ®one a5 the source continues, and the energy increases, These con-é
#ecutive cycle listings do net previde adequate :data for easy code
checking, since each cycle has several iteration loops within it. E
In the RDI subroutine, however, is a call for printing of much of
the iterative loop functien values, and it can be altered to print
on every pass. (It is ordinarily set to print enly after 25 itera-
tions, to help in diagnosing & failure to cenverge,)

By the fourth eycle the number of iterations has risen to 7, but
the stability cenditiens (LAMBDA, 6MEGA, and GAMMA) are all less than
unity, so the At is atill allowed to increase. By the eleventh cycle,
the radiatien stability measure (6AMMA, with C5 = 1,5) has risen so
that the nmext cycle must be at a smaller time increment. At this
gsame time, the radiation has heated the fourth zone enough to include
it in the radiation diffusion cycle (JSTAR increases from 3 to 4),

As more and more energy is injected into the first zone, the tempera-
tures rise, and the luminosities increase.

Although some compression is generated in the second zone by the
high pressure in the first zone, and rather high velocities result
(ebout 2000 ft/sec) in the first zone after the second cycle, the
time is still too short for a change in the density to show up {in the
first four figures listed, On the first cycle print-out, small arti-
ficial viscesity pressures show up in all the aluminum zones. These
are spurious, and are due to the slight difference in round-off be-
tween the densities as calculated in the gtnerator and as computed
here in the hydredynamic subroutine (HYD). These vigcosity terms in
turn lead to the small velocities of cycle 2 for the same aluminum
zones, although the first and last aluminum zenes have larger veloci-
ties due to the pressure gradients between the heated first zones and

ﬁthe second zone and between the aluminum and air. # -

By the third cycle, slightly more than 5% of the energy has bean

-finjected and it is still residing in the first zone of &luminum,

{ The energy check sums (labeled E, K, W, Y, W-Y+Y) after cycle 3 show

this clearly, They also show that no energy has been radiated from

Ma'_c)'}’b
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aluminum to air or out of the air as yet (the Y terms being stilil
negligible), nor has any net work been done on the air (W-Y+Y for
region 2). The net work on region one is just the energy introduced

into the aluminum,
By cycle 10, somewhat more than a third of the total energy to

be introduced is now in the aluminum ('mone' yet in the air). The
time steps have been allowed to¢ increase to nearly three times the
original choice. However, the GAMMA term is growing rapidly as the
radiation begins to flow, and by the 12th cycle it forces the At to
decrease. A careful look at the output for cycle 10 will reveal the
beginning of some rapid changes, for which smaller time steps are
perhaps desirable. The innermost aluminum zone has a temperature of
more than 15 million degrees, the velocity is more than 105 ft/sec,
the densities are beginning to change, the pressure is high and the
luminosity is rising. The Rosseland mean free path is larger, and
the net power flux is approaching a few percent of the rate of intro-

duction of energy. Essentially nothing is geing on in the air, as yet.
By the thirtieth cycle, the time step (DT) has dropped again to
what it started as. All the energy has just been put in by the source
term, and on the next and succeeding cycles no more energy will be
pumped into the first zone, Since the time did not quite reach 1(.‘.'—4
on the thirtieth cycle, but will exceed that value on the next eycle,
not quite all the intended enerpgy was introduced - lacking about %%.*
A little energy is now leaking out into the air by radiation diffusion
(Y ®1.3%) and a little hydrodynamic work has been done on the air
(W-Y+Y = 0.814342E-03), The outside of the aluminum sphere is just
getting up to high velocity, and is still moving at about half of the
velocity of the hot interior. None of the air is compressed, but the

first air zone is already up to a tenth of a million degrees,
In the next thirty cycles the time advances to ,159511 micro-

seconds, and some eighteen percent of the energy flows into the air
by radiation diffusion. This is shown by the energy check Y term for
region 1 at cycle 60 (Y = ,185566). Essentially all of this energy

1s in heat and shows as internal energy in air (E = 0,185538), with
the corresponding kinetic energy for air (K = 0,0315925) being derived

*Recall that the source was chosen as a fixed rate G&Olgcalfsec
for 10-7 sec), so that the exact energy could have been injected by
fixing the time step or by calling for an output at that time,
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from the work done by the expanding aluminum. The work term for air
g¢orresponds: W-Y+Y = 0,0315648.

é The cycle 60 output ghows that the aluminum temperatures have
!allen, and the luminosities and mean free paths are also decreasing.
Rt the same time, the velocities are increasing. The air is now hot
out to about seven feet, and so a "fireball" has appeared.

At cycle 103 a special print occurs as directed by the GETVAR
subroutine. Whenever the iteration count in the convergence loop
which derives a2 temperature from a new internal energy exceeds 10,
the print occurs, listing the zone number (16 in this case), the
iteration count, the variables (OVAR and VAR, in this case since NV
is 2, OVAR is the temperature and VAR is the specific volume), the
function being worked with FN (in this case the energy, Bince MF = 2),
and the desired final value for the function F.

When large changes in variables are taking place, the combined
use of complicated equation of gtate functions and the Newton's
Method may lead to trouble., The Newton's Method employs local slopes
(derivatives) to approximate the change needed in the wvariable in
order to aryxive at the correct function value. Occasionally, as has
happened here, a pair of points on the functional curve are struck
such that the slopes from each return the variable to the previous
value on the next step, i.e., the oscillation between two values is
stable, and convergence is never achieved, To avoid such a needless
catastrophe, the GETVAR subroutine kicks the convergence loop just
once on the 16th iteration by taking the next guess as the average
of the current and the previous pguess. As is evident in this case,
such a joggle can quickly lead to convergence,

The termination of the run at cycle 131 represents 10 minutes
of execution, The next run was chosen to have C5 = 10, which allows
8 substantial increase in the time steps since the radiation diffusion
-tability (using C5) has been restricting the time steps. After re- f

nerating with this change, the time steps increase (by 9/8ths) cveryi
!yCIe for twenty cycles, or by nearly an order of magnitude At (from
47E-05 at n=132 to ,44E-04 at n=152).



The termination at cycle 197 represents another 10 minutes of

. Tunning time. For the following run, C5 was increased to 20, but

‘5 already the shock forming in the first zones of region 2 has raised
g the shock stability limit (LAMBDA) so that radiation limits as de-

‘ fined by C5 and GAMMA cease to restrict the time steps, GAMMA soon
remains equal to % (its initial value when searching for the largest
value) and At is reduced by the LAMBDA criterion as the shock con-
tinues to prow,

By the last cycle, (n=259) some 30% of the energy has diffused
from region 1 into region 2, and a shock is beginning to grow at the
outer edge of the radiation sphere in region 2 as well as from the
rapid expansion at the inner edge. Carried to later times, the hydro-
dynamic expansion would soon dominate, and only slight radiative
changes would be seen. Eventually, the grey-body radiation loss
routine {CDR) would reduce the energy remaining behind the shock and
lower the total net energy, but the radiation diffusion will all but
cease, and could be eliminated at late stages without gerious error.
An appropriate choice of the critical temperature Z1 will keep JSTAR
from growing beyond the hot region and will thus restrict the calcula-
tion of radiation diffusion to just those inner zones that remain hot

after the shock passes.
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